The Road-Bill

Assignment 2

Data Structures \& Algorithms
Due date: 2 February, 2020

Problem Statement: There are N cities in a country. the cities are connected by M bidirectional roads. The roads are old and need to be renovated, each road has a different price of renovation 'C' . Being the Transport minister of the country you need to sanction the renovation of these roads. you have only two choices, renovate a road or shut it down.
You face the following problem.
You cannot sanction renovation of over-expensive roads. you have to decide a price P such that you shut down roads which demand price above P and sanction any road with price lesser than or equal to P .
' J ' is defined as the disconnectedness of the country, it is defined as the unordered count of pairs of cities ' A ' and ' B ' such that there is no path connecting ' A ' to ' B '. In any case you cannot let J exceed a given threshold value as the country should be as connected as possible.
To please everybody you decide to find the minimum value of P such that J is below a given a threshold (threshold value is given as input).

Input

First line of input has N,M
M lines follow with 3 integers $\mathrm{i}, \mathrm{j}, \mathrm{x}$ which says a road exists between i and j and C is the cost of renovating it.
Last line contains the threshold value for J.

Output

A single non-negative integer which is the minimum value of P .
Constraints
$1 \leq N, M \leq 100000$
$1 \leq J \leq N *(N-1) / 2$
$1 \leq i, j \leq N$
$1 \leq C \leq 1000000000$
Time Limit: 1 sec
Memory Limit: 256 MB

Sample Test Case

Input	Output
4 4	1
12	1
2	3
3	4
1	4
5	
5	

Explanation

<if the P is set as 1 , the disconnectedness will be 4 which is still lesser than the allowed threshold value of $\mathrm{J}=5$. note that setting P as 0 will take the disconnectedness to 6 which is greater than 5 and hence not allowed. >

